1.生命体系小知识

2.生命本质是什么,其客观存在应该如何理解

3.生命系统结构层次从小到大的顺序

4.心理生命又叫什么生命,是人特有的生命形式

5.电脑科学研究主要研究什么

系统生命周期的三个方面_电脑系统的生命形式

自然系统的最高级形式,是指能独立与其所处的环境进行物质与能量交换,并在此基础上实现内部的有序性、发展与繁殖的系统。

基本介绍 中文名 :生命系统 外文名 :Biosystem 定义 :自然系统的最高级形式 :是生物,但不是生命系统 最大生命系统 :生物圈 最小生命系统 :细胞 包括 :生物群落和非生物的物质与 环境 生命角色 :生产者、消费者和分解者 简介,包括,生命角色,各部分定义, 简介 瑰丽的生命画卷,在常人眼里,也就是芸芸众生,千姿百态。但在科学家的眼中,它们却是富有层次的生命系统。从微观的分子水平到巨观的群体水平,都属于生命系统的不同范畴,有着不同的物质和结构基础、发展和变化规律。 是自然系统的最高级形式,是指能独立与其所处的环境进行物质与能量交换,并在此基础上实现内部的有序性、发展与繁殖的系统。由大到小依次为生物圈、生态系统、群落、种群、个体、(消化、呼吸、循环等)系统、器官、组织、细胞。但单细胞生物(草履虫)不具有系统、器官、组织层次,细胞即是个体;植物是由根、茎、叶、花、果实和六大器官直接构成的,因此没有(消化、呼吸、循环等)系统层次;是生物,但不是生命系统。 包括 任何一个生态系统都由生物群落和物理环境两大部分组成。阳光、氧气、二氧化碳、水、植物营养素(无机盐)是物理环境的最主要要素,生物残体(如落叶、秸秆、动物和微生物尸体)及其分解产生的有机质也是物理环境的重要要素。物理环境除了给活的生物提供能量和养分之外,还为生物提供其生命活动需要的媒质,如水、空气和土壤。而活的生物群落是构成生态系统精密有序结构和使其充满活力的关键因素,各种生物在生态系统的生命舞台上各有角色。 生命角色 生态系统的生命角色有三种,即生产者、消费者和分解者,分别由不同种类的生物充当。 生产者吸收太阳能并利用无机营养元素(C、H、O、N等)合成有机物,将吸收的一部分太阳能以化学能的形式储存在有机物中。生产者的主体是绿色植物,以及一些能够进行光合作用的菌类。由于这些生物能够直接吸收太阳能和利用无机营养成分合成构成自身有机体的各种有机物,我们称它们是自养生物。 消费者是直接或间接地利用生产者所制造的有机物作为食物和能源,而不能直接利用太阳能和无机态的营养元素的生物,包括草食动物、肉食动物、寄生生物和腐食动物。消费者以动物为主。消费者按其取食的对象可以分为几个等级:草食动物为一级消费者,肉食动物为次级消费者(二级消费者或消费者等等)。杂食动物既是一级消费者,又是次级消费者。分解者是指所有能够把有机物分解为简单无机物的生物,它们主要是各种细菌和部分真菌。 分解者以动植物的残体或排泄物中的有机物作为食物和能量来源,通过它们的新陈代谢作用,有机物被分解为无机物并最终还原为植物可以利用的营养物。 消费者和分解者都不能够直接利用太阳能和物理环境中的无机营养元素,我们称它们为异养生物。值得特别指出的是,物理环境(太阳能、水、空气、无机营养元素)、生产者和分解者是生态系统缺一不可的组成部分,而消费者是可有可无的。 各部分定义 1、细胞:能独立进行生命活动的有膜包被的生物体的基本结构和功能单位(不含细胞结构)。 2、组织:许多结构相似、功能相似的细胞与细胞间质形成的细胞群叫做组织。 3、器官:具有相似功能的一些组织组成的,能够独立完成某一生命活动的结构叫做器官。 4、系统:多个器官组成的,能够完成某一类生命活动的结构层次叫做系统,植物没有系统。 5、个体:单个生物体成为个体。 6、种群:由同一区域内,某一种生物的所有个体组成的层次叫做种群。 7、群落:由同一区域内,所有生物的所有个体(或所有种群)组成的层次叫做群落 。 8、生态系统:由同一区域内,所有生物的所有个体和其生活的无机环境共同组成的层次叫做生态系统 。 9、生物圈:范围是大气圈的底部、水圈大部、岩石圈表面、最大的生态系统称生物圈。

生命体系小知识

自然系统的最高级形式,是指能独立与其所处的环境进行物质与能量交换,并在此基础上实现内部的有序性、发展与繁殖的系统。

是自然系统的最高级形式,是指能独立与其所处的环境进行物质与能量交换,并在此基础上实现内部的有序性、发展与繁殖的系统。

由大到小依次为生物圈、生态系统、群落、种群、个体、(消化、呼吸、循环等)系统、器官、组织、细胞。

但单细胞生物(草履虫)不具有系统、器官、组织层次,细胞即是个体;植物是由根、茎、叶、花、果实和六大器官直接构成的,因此没有(消化、呼吸、循环等)系统层次;是生物,但不是生命系统。

生态系统的生命角色有三种,即生产者、消费者和分解者,分别由不同种类的生物充当。生产者吸收太阳能并利用无机营养元素(C、H、O、N等)合成有机物,将吸收的一部分太阳能以化学能的形式储存在有机物中。

生产者的主体是绿色植物,以及一些能够进行光合作用的菌类。由于这些生物能够直接吸收太阳能和利用无机营养成分合成构成自身有机体的各种有机物,我们称它们是自养生物。

消费者是直接或间接地利用生产者所制造的有机物作为食物和能源,而不能直接利用太阳能和无机态的营养元素的生物,包括草食动物、肉食动物、寄生生物和腐食动物。消费者以动物为主。消费者按其取食的对象可以分为几个等级:草食动物为一级消费者,肉食动物为次级消费者(二级消费者或消费者)等等。

杂食动物既是一级消费者,又是次级消费者。分解者是指所有能够把有机物分解为简单无机物的生物,它们主要是各种细菌和部分真菌。分解者以动植物的残体或排泄物中的有机物作为食物和能量来源,通过它们的新陈代谢作用,有机物被分解为无机物并最终还原为植物可以利用的营养物。

消费者和分解者都不能够直接利用太阳能和物理环境中的无机营养元素,我们称它们为异养生物。值得特别指出的是,物理环境(太阳能、水、空气、无机营养元素)、生产者和分解者是生态系统缺一不可的组成部分,而消费者是可有可无的。

扩展资料

1、细胞:能独立进行生命活动的有膜包被的生物体的基本结构和功能单位(不含细胞结构)。

2、组织:许多结构相似、功能相似的细胞与细胞间质形成的细胞群叫做组织。

3、器官:具有相似功能的一些组织组成的,能够独立完成某一生命活动的结构叫做器官。

4、系统:多个器官组成的,能够完成某一类生命活动的结构层次叫做系统,植物没有系统。

5、个体:单个生物体成为个体。

6、种群:由同一区域内,某一种生物的所有个体组成的层次叫做种群。

7、群落:由同一区域内,所有生物的所有个体(或所有种群)组成的层次叫做群落?。

8、生态系统:由同一区域内,所有生物的所有个体和其生活的无机环境共同组成的层次叫做生态系统?。

9、生物圈:范围是大气圈的底部、水圈大部、岩石圈表面、最大的生态系统称生物圈。

参考资料:

生命系统的百度百科

生命本质是什么,其客观存在应该如何理解

1.生命是什么体系

生命系统 生物体所表现出来的自身繁殖、生长发育、新陈代谢、遗传变异以及对 *** 产生反应等复合现象。

这个定义把生命表述为生物的复合现象。抹杀了生命和生物现象的差别,混淆了生命和生物的概念,不符合生命的客观实际,违背了认识的逻辑规律。

生命是由高分子的核酸蛋白体和其他物质组成的生物体所具有的特有现象。与非生物不同,生物能利用外界的物质形成自己的身体和繁殖后代,按照遗传的特点生长、发育运动,在环境变化时常表现出适应环境的能力。

生命是生物的生长、发育、繁殖、代谢、应激、进化、运动、行为、特征、结构所表现出来的生存意识。 生命或生存意识是生物的本质、内在规定和组成部分,是生物的无穷变化遵循的普遍规律。

生物是生命、生存意识和物的统一体。 生物的生长、发育、繁殖、代谢、应激、运动、行为、特征、结构是生命或生存意识的表现形式,我们通过观察生物的表现形式,就可以判断出一个物体是否具有生命或生存意识、是生物还是非生物。

生态系统 ecosystem 生态系统指由生物群落与无机环境构成的统一整体。生态系统的范围可大可小,相互交错,最大的生态系统是生物圈;最为复杂的生态系统是热带雨林生态系统,人类主要生活在以城市和农田为主的人工生态系统中。

生态系统是开放系统,为了维系自身的稳定,生态系统需要不断输入能量,否则就有崩溃的危险;许多基础物质在生态系统中不断循环,其中碳循环与全球温室效应密切相关,生态系统是生态学领域的一个主要结构和功能单位,属于生态学研究的最高层次。 随着生产力水平的提高,人类活动对生态系统的干扰日益增大,在破坏与保护、生命与金钱的痛苦交织中,人类逐渐意识到了生态系统的真正价值,人类开始关注生态系统的现状,并将其纳入道德体系中,形成了全新的生态道德,这一切深刻影响着庞大的工业帝国,与人类的终极命运。

2.关于珍爱生命的小知识

珍惜生命--交通小知识

横过道路不走人行横道,随便乱穿,或者在汽车已经临近时急匆匆过道路,都是十分危险的举动。

1、文明候车乘车

候车时,应依次排队,站在道路边或站台上等候,不应拥挤在车行道上,更不准站在道路。另外,乘坐公共车辆,应该遵守公共秩序,讲究社会公德,注意交通安全。

2、安全横过道路 中间拦车。上车时,应等汽车靠站停稳,先让车上的乘客下完车,再按次序上车,不能争先恐后。上车后,应主动买票,主动让座给老人、病人、残疾人、孕妇或怀抱婴儿的乘客。车辆行驶时,要拉住扶手,头、手不能伸出车窗外,以免被来往车辆碰擦。下车时,要依次而行,不要硬推硬挤。下车后,应随即走上人行道。需要横过车行道的,应从人行道内通过;千万不能在车前车尾急穿,这样很不安全。

3、严禁路边游戏

道路是为了交通的便利而建造的。道路上车辆川流不息。交通十分繁忙,如果我们随意地在道路上玩耍、游戏、追逐,把它当作“游戏场”,放学以后在道路拉开“场子”踢足球、打羽毛球,既妨碍车辆的通行又会被车辆无情撞伤。在人行道上跳“橡皮筋”、跳绳、踢毽子,会给行人的通行带来困难,是妨碍交通的。在道路上追追打打,车前车后乱穿,甚至相互扔石子,这就更容易出事故了,另外一些同学,因为不懂得在道路上玩耍的危害性,甚至在道路中间拦车、追车、扒车和向汽车投掷石块,以此为乐,这是最最危险的举动,一旦被车撞倒,后果不堪设想。

3.关于生命的知识有什么

有一个科学定理,姑且叫做了定理吧“物质的变化方向趋向与稳定”,无论是生物还是非生物。

其实生物的最小部分,比如细胞器官和DNA,就越和非生物相像。DNA与非生物的一些分子链本质上没什么区别。只是人们的自大把生物的定理神圣化,总在寻找“我们从哪里来”,是什么创造了生物。

“物质的变化方向趋向与稳定”指出了,地球上为什么会出现某种元素在某种物质中大量存在,而该物质的分子键能远大与该元素其他状态的分子键能。这种现象是不符合能量定理的。它的出现是因为该状态下的物质更稳健,存在的时间更长。一个大流入小流出的湖最终会变成大的湖泊。

所一在考虑地球生物产生的原因,应该辨证的“特殊包括普遍”上看,而不是讲“地球的特殊环境造就了生命”,而应该说“生命是在宇宙中普遍存在的”,不同的环境会产生不同的生命形式。而生命的系统在其生存期间比自然界能更好的“一个大流入小流出的湖”。

人类对宇宙的认识还是很渺小的,人类知识环中有太多的错误和缺失,不要用狭隘的眼光来看待问题。

4.生物小常识

1.为甚么星星会一闪一闪的? 我们看到星闪闪,这不是因为星星本身的光度出现变化,而是与大气的遮挡有关。

大气隔在我们与星星之间,当星光通过大气层时,会受到大气的密度和厚薄影响。大气不是绝对的透明,它的透明度会根据密度的不同而产生变化。

所以我们在地面透过它来看星星,就会看到星星好像在闪动的样子了。 2. 为甚么人会打呵欠? 当我们感到疲累时,体内已产生了许多的二氧化碳。

当二氧化碳过多时,必须再增加氧气来平衡体内所需。因为这些残留的二氧化碳,会影响我们身体的机能活动,这时身体便会发出保护性的反应,于是就打起呵欠来。

打呵欠是一种深呼吸动作,它会让我们比平常更多地吸进氧气和排出二气化碳,还做到消除疲劳的作用呢。 3. 为甚么蛇没有脚都能走路? 蛇的身上有很多鳞片,这是它们身上最外面的一层盔甲。

鳞片不但用来保护身体,还可以是它们的「脚」。 蛇向前爬行时,身体会呈S形。

而每一片在S形外边的鳞片,都会翘起来,帮助蛇前进时抓住不平的路面。这些鳞片跟蛇的肌肉互相配合,并能推动身体向前爬行,所以蛇没有脚也可以走动呀! 4. 为甚么向日葵总是朝着太阳开花 向日葵花盘下面茎部的地方,含有一种叫做「植物生长素」的物质。

这物质有加速繁殖的功用,但却具有厌旋光性,每遇到光线时,便会跑到背光的一面去。 所以太阳升起时,向日葵茎部便马上躲到背光的一面去,看起来整棵植物就向着太阳的方向弯曲了。

5. 为甚么人老了头发便会变白? 我们的头发中有一种叫「黑色素」的物质,黑色素愈多头发的颜色便愈黑。而黑色素少的话,头发便会发黄或变白。

人类到了老年时,身体的各种机能会逐渐衰退,色素的形成亦会愈来愈少,所以头发也会渐渐变白啊! 6. 为甚么萤火虫会发光? 萤火虫会发光因为在它们的腹部末端有发光器,发光器内充满许多含磷的发光质及发光酵素,使萤火虫能发出一闪一闪的光。 萤火虫发光的目的,除了要照明之外,还有求偶、警戒、诱捕等用途。

这也是它们的一种沟通的工具,不同种类萤火虫的发光方式、发光频率及颜色也会不同,它们藉此来传达不同的讯息。 7. 为甚么肚子饿了会咕咕叫? 肚子饿了便会咕噜咕噜地叫,这是因为之前吃进的食物快消化完,胃里虽然空空的,但胃中的胃液仍会继续分泌。

这时候胃的收缩便会逐渐扩大,内里的液体和气体便会翻搅起来,造成咕噜咕噜的声音。 下次不要再为肚子咕咕叫而感到尴尬啊!因为这是正常的生理动作呢。

8. 为甚么驼鸟不会飞? 身型庞大的驼鸟类的一种,但它们却不会飞上天啊!这不是因为它们的翅膀不管用,而是它们的羽毛都太柔软,翅膀又太小,根本不适合飞行。另外,驼鸟的肌肉不发达,胸骨又平平的,对飞行都没有帮助。

驼鸟生活在非洲,由于长期居于沙漠地区,身体为了适应环境,便逐渐演化成现在的样子。 9. 为甚么罐头里食品不容易变坏? 午餐肉、豆豉鲮鱼、茄汁豆。

都是美味的罐头食物,它们都可以存放很久而不易变坏。

这因为罐头是密封的,细菌便无法进入。 人们在制造罐头食品的时候,把罐头里的空气全部抽出,然后把它封口。

在没有空气的情况下,即使里面的食物沾上少许细菌,它们也无法生存或繁殖啊! 10. 为甚么婴儿刚出生时都会哭个不停? 婴儿刚出生时都会呱呱大哭,这不是因为他们感到不开心,而是他们正在大口大口地呼吸着第一口的空气呢! 当婴儿离开妈妈身体出生时,他们吸进的第一口空气会冲到喉部去,这会猛烈地冲击声带,令声带震动,然后发出类似哭叫的声音。 11. 为甚么蜥蜴的尾巴断落后仍然不断弹跳着? 为了保护自己,很多蜥蝪也利保护色掩人耳目;而部份蜥蜴当受到袭击时,尾巴更会因肌肉剧烈收缩而导致断落。

基于断落的尾巴中仍有部份神经活着,它会不断弹跳,从而分散敌人的注意力,以便逃脱。别以为他们的生命会这样完结,其实只需多个月,尾巴又会重新长出来,继续生活。

12. 为甚么松鼠的尾巴特别大? 别看轻松鼠的尾巴!松鼠在树上跳来跳去的同时,它的尾巴正发挥很大的功用。它能够令松鼠在树上跳跃时得到平衡,避免掉下来受伤。

此外,这条大大的尾巴更能于冬天发挥保护的功用,紧紧围着松鼠的身躯,既方便,又实用。 13. 为甚么人的大拇指不可以有一或三节? 一般人有五只手指,而手指的长度各有不同。

但是,有没有人察觉到,除了大拇指外,其它手指也有三节,而唯独大拇指只有两节呢? 原来,它的节数正好配合其它四指。要是三节的话,大拇指会显得没有力,以致不能提起较重的物件;要是只得一节,它便不能自如地与其它四指配合抓紧东西! 14. 为甚么自己搔自己时不感到痕痒? 当别人搔自己时,我们会倍感痕痒,而且不断大笑;可是,当自己搔自己的时候,我们不单不会大笑,而且更不感痕痒。

基于我们的思想上已有了准备,大脑会发出一种 「不会有危险」的讯息,神经亦随之放松,所以便不会大笑起来和感到痕痒了! 15. 为甚么海水大多是蓝、绿色? 望向大海,很多时也发现海水呈现蓝、绿色。可是,当你把海水捞起时,你却只能看到它像往日的水般,透明无色。

原来,海水本身与我们日常所接触到的水没有。

5.生命科学体系有哪些

生命科学是指生物学及其有关的广泛领域。

当我们研究生物界时,常常从不同的方面、角度或不同的水平进行,因此,生物学产生许多分支。根据研究对象的不同,生物学可分动物学、植物学和微生物学。

它们分别研究动物、植物或微生物的形态、分类、生理、生态、分布、发生、遗传、进化及其与人类的关系。根据研究内容的特点不同,生物学又可以分为:分类学、形态学、胚胎学、古生物学、遗传学、生态学、生物化学、生物物理学,等等。

从生物体结构水平来划分,生物学则可以分为:分子生物学、细胞学、组织学、器官生物学、群体生物学,等等。此外,随着人类活动范围的不断扩大,又相继发展出宇宙生物学、辐射生物学、深海生物及研究环境保护的生物科学。

6.关于“生命的起源”的知识

生命何时、何处、特别是怎样起源的问题,是现代自然科学尚未完全解决的重大问题,是人们关注和争论的焦点。

历史上对这个问题也存在着多种臆测和说,并有很多争议。随着认识的不断深入和各种不同的证据的发现,人们对生命起源的问题有了更深入的研究,下面介绍几种著名的说。

生命起源的创造论(或神造说) 创造论否认一切的事物是自然形成的说法。它认为哪怕是正在呼吸的空气,也是需要被创造才得以产生。

目前人类正在面临各种自然枯竭,生态平衡被破坏而带来的各种灾难的情况下,对大自然的驾驭更是感到无能为力。人类无能为力的时候,还能做什么呢?唯有依靠神。

这不是愚昧,而是人的本能就是这样。在《圣经》上说,“起初,神创造天地。”

人类是否真的与上帝有着密切的关系恐怕只有到上帝来审判这个世界的时候才能知晓。

我们不能否认创造论,因为目前还没有什么科学可以证明它是否是真正的真理。 生命起源的自然发生说 又称“自生论”或“无生源论”,认为生物可以随时由非生物产生,或者由另一些截然不同的物体产生。

如中国古代所谓“肉腐出虫,鱼枯生蠹”、亚里士多德说的“……有些鱼由淤泥及砂砾发育而成”。中世纪有人认为树叶落入水中变成鱼,落在地上则变成鸟等。

自然发生说是19世纪前广泛流行的理论,这种学说认为,生命是从无生命物质自然发生的。如,我国古代认为的“腐草化为萤”(即萤火虫是从腐草堆中产生的),腐肉生蛆等。

在西方,亚里士多德(公元前384~公元前322年)就是一个自然发生论者。有的人还通过“实验”证明,将谷粒、破旧衬衫塞入瓶中,静置于暗处,21天后就会产生老鼠,并且让他惊讶的是,这种“自然”发生的老鼠竟和常见的老鼠完全相同。

19世纪时,法国微生物学家巴斯德(LouisPasteur) (1821-1895.9.25)发现,将肉汤置于烧瓶中加热,沸腾后让其冷却,如果将烧瓶开口放置,肉汤中很快就繁殖生长出许多微生物;但如果在瓶口加上一个棉塞,再进行同样的实验,肉汤中就没有微生物繁殖。巴斯德认为,肉汤中的小生物来自空气,而不是自然发生的。

他的实验为科学家进一步否定“自然发生论”奠定了坚实的基础。 1860年,法国微生物学家巴斯德设计了一个简单但令人信服的实验,彻底否定了自然发生说。

生命起源的化学起源说 化学起源说是被广大学者普遍接受的生命起源说。这一说认为,地球上的生命是在地球温度逐步下降以后,在极其漫长的时间内,由非生命物质经过极其复杂的化学过程,一步一步地演变而成的。

米勒实验米勒的实验装置 米勒在他的实验中设在生命起源之初大气层中只有氰气,氨气和水蒸气等物,其中并没有氧气等,当他把这些气体放入模拟的大气层中并通电引爆后,发现其中产生了些蛋白质,而蛋白质是生命存在的形式,因此他认为生命是从无到有的理论将可确立了。证明生命是进化而来的。

但米勒的实验也有很多的疑点,例如所使用的能量大小,不同气体的配合等 虽然都产生了氨基酸、醣类等物质,但仍不能证明这就是生命的起源。因为他所设的大气层不能证明是原始的大气层,所得的结果就是不确定的。

米勒本身也承认他的实验与自然界生命起源相距仍很遥远。并且现代科学发现在火星上有氧气存在却没有生命,那么米勒设大气层中没有氧气存在故没有生命之说就不成立,因此无法证明生命起源是由单细胞进化而来的。

化学起源说将生命的起源分为四个阶段(米勒实验)。 第一个阶段,从无机小分子生成有机小分子的阶段,即生命起源的化学进化过程是在原始的地球条件下进行的,这一过程教材中已有叙述,这里不再重复。

需要着重指出的是米勒的模拟实验。在这个实验中,一个盛有水溶液的烧瓶代表原始的海洋,其上部球型空间里含有氢气、氨气、甲烷和水蒸汽等“还原性大气”。

米勒先给烧瓶加热,使水蒸汽在管中循环,接着他通过两个电极放电产生电火花,模拟原始天空的闪电,以激发密封装置中的不同气体发生化学反应,而球型空间下部连通的冷凝管让反应后的产物和水蒸汽冷却形成液体,又流回底部的烧瓶,即模拟降雨的过程。经过一周持续不断的实验和循环之后。

米勒分析其化学成分时发现,其中含有包括5种氨基酸和不同有机酸在内的各种新的有机化合物,同时还形成了氰氢酸,而氰氢酸可以合成腺嘌呤,腺嘌呤是组成核苷酸的基本单位。米勒的实验试图向人们证实,生命起源的第一步,从无机小分子物质形成有机小分子物质,在原始地球的条件下是完全可能实现的。

第二个阶段,从有机小分子物质生成生物大分子物质。这一过程是在原始海洋中发生的,即氨基酸、核苷酸等有机小分子物质,经过长期积累,相互作用,在适当条件下(如黏土的吸附作用),通过缩合作用或聚合作用形成了原始的蛋白质分子和核酸分子。

第三个阶段,从生物大分子物质组成多分子体系。这一过程是怎样形成的呢?前苏联学者奥巴林提出了团聚体说,他通过实验表明,将蛋白质、多肽、核酸和多糖等放在合适的溶液中,它们能自动地浓缩聚集为分散的球状小滴,这些小滴就是团聚体。

奥巴林等人。

生命系统结构层次从小到大的顺序

[color=#1b001b]本文编选自《走向计算主义——数字时代人工创造生命的哲学》(中国书籍出版社2004)

生命的本质

李建会

生命是什么?历史上,哲学家们非常关心这个问题。亚里士多德、康德、恩格斯等都曾提出过自己的看法。然而,在分子生物学革命之后的很长一段时间,哲学家和生物学家们似乎完全忽视了这个问题。本来生物学的革命大大推进了我们对生命的理解,我们好像应当能够更准确地说出生命是什么,然而,遗憾的是,从50年代到80年代,生物学家和哲学家几乎大都避而不谈这个问题。生物学家往往感到这个问题太“哲学”,因而把它当作是一个哲学问题,而不是一个科学问题。而另一方面,哲学家们可能感到这个问题“太科学”,因此把它主要当作一个科学问题,而不是一个哲学问题(Bedau 1996)。所以,当今一些主要生物学哲学家的生物学哲学著作,比如像罗森伯格的《生命科学的结构》,索伯的《生物学哲学》,都没有把生命的本质问题作为一个主要的问题来研究。在我国科学哲学界,生命的本质问题更是很少有人触及,多年来,主要的哲学刊物几乎没有发表过一篇关于生命本质问题的研究论文。针对这种情况,本文讨论了生命难以定义的各种原因,详细论述了定义生命的两种主要方法:实体定义方法和功能定义方法,分析一些主要生命定义的优点和问题,最后提出并论证了生命的信息定义。

一、定义生命的困难

人们之所以很少谈论生命的本质或定义问题,一个重要的原因是这个问题太难回答。之所以难以定义生命,主要有以下几个原因:

首先,我们每个人都有着关于生命的常识经验,而定义生命往往要包含所有的生命现象,其中包括大量常人不熟悉的生命和处于极限状态下的生命。这样定义出的生命概念可能和常识观念相差甚远,甚至完全相反。我们常识的生命观念一般都与动物和植物的一般特征有关,这些特征包括生长、繁殖、自我维持、对外界刺激做出反应等等。但当我们定义生命时,我们需要考虑所有类型的生命的特征,包括细菌等微小的生物,甚至还要考虑、类、蛋白感染素等。这些生物的特征和我们的常识观念具有非常大的差别。

其次,不同学科的人在定义生命时,往往从本学科出发,把生命的某一方面加以强调,把某一方面作为生命的本质。比如,生理学往往把能够完成诸如消化、新陈代谢、排泄、呼吸、运动、生长、发育和对外界刺激做出反应的功能的系统定义为生命系统。生物化学和分子生物学又往往把生命有机体看作是可传递编码在DNA和RNA中的遗传信息的系统,这些信息可以控制蛋白质的合成,而蛋白质决定着生物的主要性状。进化论往往把一个能够通过自然选择进化的系统看作是生命系统。热力学则又把生命看作是一个与它的环境交换物质和能量的开放系统。开放系统能够“吃进”负熵,使系统从无序创造出秩序,利用这些负熵保持和重建它自己的组织。不同学科的视角的不同也使人们感到生命难有统一的概念。

第三,生命现象与非生命现象存在着连续性,它们之间并没有一条截然分明的界限;而我们定义生命的目的又是要把它们明确地区分开来,这必然使我们关于生命的定义要么太宽,把一些非生命的现象也包括在内;要么又太窄,一些生命现象也被排除在生命之外。比如,上面不同学科关于生命的定义尽管是有意义的,但实际上,它们在逻辑上都是不能令人满意的。它们或者把生物学家认为是有生命的系统当作是没有生命的,或者把非生命的系统也当作是有生命的。比如,生理学定义就会把休眠的、、类等排除在生命系统之外,因为它们并不进行新陈代谢,又把汽车等非生命的系统当作是有生命的,因为汽车也能进行新陈代谢。生物化学和分子生物学的定义会把蛋白感染素(导致瘙痒病的似蛋白感染粒子)排除在生命之外。

由于这些困难,有些生物学家往往把生命的定义问题当作一个回答与不回答对生物学的发展并没有多大影响的问题(Lange 1996)。1960年的诺贝尔桂冠得主,免疫学家梅达沃(P. B. Medawar)曾经不耐烦地说,生命是什么的讨论使人感到生物学对话的低水平。生物学家往往认为我们关于生命的直觉的概念对我们研究生物学现象已经足够;没有清晰明白的生命概念,并不会对生物的结构、功能、进化过程等方面的研究产生任何不良影响。一些哲学家也因此认为对生命概念作精确的定义对生物学研究并无必要。哲学家塞尔(John Searle)就说过,“生物学家当然不需要持续不断地思考生命是什么,并且确实,大多数生物学的著作甚至不需要使用生命这个概念。然而,没有人在他健全的思想里会否认他研究的生物学现象是生命的形式(Searle 1992: 227-8)”。斯蒂尔尼(Kim Sterelny)和格里菲斯(Paul Griffiths)在他们新近出版的一本生物学哲学的著作中也曾说道,生物学家并不需要一个生命定义来帮助他们识别他们所思考的东西是什么(Sterelny and Griffiths 1999)。

然而,并不是所有的生物学家和哲学家都赞同这样的观点。1958年的诺贝尔桂冠得主,遗传学家约书亚?莱德伯格(Joshua Lederberg)曾写道,“理论生物学的一个重要目标是给出一个生命的抽象定义(转引自Lange 1996: 226)。”除理论生物学家对生命概念感兴趣以外,研究生命起源的生物学家,研究地外生命的生物学家等,也都认为生命的定义问题非常重要。因为对生命的不同定义直接关系到他们工作的内容、范围和研究方向。80年代末兴起的人工生命学科更是把生命的概念问题作为首先要回答的问题。

二、地球上“如吾所识的生命”

20世纪80年代末兴起的计算机与生物学交叉的前沿科学人工生命曾把地球上的生命说成是“如吾所识的生命”(life-as-we-know-it),而把其它可能的生命形式,包括在计算机中创造的数字生命称为“如其所能的生命”(life-as-it-could-be)。生命的定义不仅要涵盖已知的生命,而且要涵盖未知的或可能的生命。这里,我们将先从我们所知道的地球上的生命特征说起。地球上的生命,如果从物质组成、结构和性质来看,主要有以下几个特点:

首先,从物质组成上看,所有生物都具有基本相似的物质组成。所有生命基本上都由碳、氢、氧、氮、磷、硫、钙等元素构成。这些元素相互结合,构成氨基酸、核苷酸、葡萄糖等生命小分子;这些小分子再通过特殊的方式相互结合,形成蛋白质、核酸、多聚糖和脂类等生物大分子。这些分子成为构建生命的基本的“建设砖块”。由于重要的生物大分子都包含有碳,所以人工生命研究者又把这种“如吾所识的生命”叫做“碳基生命”。

从结构看,地球上直接表现出生命活性的生命都是由细胞构成的。细胞是生命的基本结构单位,一切生命都离不开细胞这一生命的基本形态。尽管细胞的形式多种多样,但基本上都有着相同的结构,都是由半透性的膜包围起来的与外界具有选择性物质交换的体系。其内部构成也基本相似,都有负责生命信息存储和表达的核或核区,有执行各种生命功能的细胞器(像线粒体、内质网、质体、核糖体、高尔基体等)。细胞还是生命的活动赖以进行的基础。生命的各种活动,比如代谢、生长、分裂、死亡等都是建立在细胞活动的基础上的。所以,细胞是维持生命系统运转的最基本的存在形式。离开了细胞,生命活动就会停止。、类和蛋白感染素是生命的边缘情况。它们只有在进入宿主细胞以后才能表现出生命活动。如果没有宿主细胞,无论外界环境多么“优越”,它们也只能静静地保存在那里不表现出任何生命活动的迹象。

细胞是生命的基本单位,但细胞并不是生命的全部。生命的存在是多层次的。除一些简单的生物之外,大部分生物都是由多细胞构成的。多细胞生物以组织、器官、系统等方式有序地将不同类型的细胞组织在一起,形成一个有复杂的等级结构和丰富功能的生物个体。组织是由细胞分化形成的具有相同功能的细胞的集合。器官是由不同的组织通过相互级联形成的具有特定功能的结构。系统是由不同的器官通过级联形成的完成特定功能的结构。最后多种系统相互结合形成统一的有序的生物个体。由于多细胞生物是由细胞分化形成的级联结构,所以,各个部分之间紧密联系,不可分割。另一方面,由于不同种类的多细胞生物的级联结构不同,使生命个体之间表现出差异性或多样性(陈阅增等19:17)。历史上,由于自然选择,生物物种不断进化和发展,表现出高度歧化的发展态势和趋向。在漫长的进化过程中产生了植物、动物,最后进化出了智能生物——人类。

地球上的生物与其环境之间还通过相互作用,形成了一个复杂的、动态的、稳定的生态系统。在这个系统中,所有生物相互制约、相互依赖。生态系统还和其它生态系统之间相互作用,形成一个包括所有生命以及地球底层大气空间、陆地表面、岩石圈、水圈在内的生物圈。在生物圈内,生物通过改变自己,不断地进化以适应变化的自然环境和生命环境;同时生命也通过它们的活动改变着它们的生存环境。

生命的多层次性的级联结构使我们认识到,生命是自然界中的一种高度有序的现象(陈阅增等,19:17)。这种有序性,从微观到宏观、从过去到现在全方位地表达出来。这种有序性既是结构上的,又是功能上的;既是空间上的,又是时间上的。这种结构还使我们看到,在生命的每一层次,都有新的属性突现出来。这样,我们在研究生命现象时,既要看到各层次之间的关联性,又要看到各层规律的独立性。

从规律上看,所有生命几乎都遵循相同的基本规则:所有生命使用相同的遗传密码、遵循着相同的复制、转录和蛋白质合成机制以及相同的DNA修复机制。生命的代谢活动,包括各种主要的生命物质的生成、转化,能量的获取、利用方式等,也都有着高度的一致性。

从性质或特征上看,地球生命具有如下一些特征:

首先,所有生命都处在与外界不断地进行物质和能量的代谢过程中。物质代谢和能量代谢实际上是一个过程的两个方面。生命在合成自身物质的过程中储存能量,在分解物质的过程中释放能量。新陈代谢的关键的化学过程是三羧酸循环和氧化磷酸化。新陈代谢是生命存在和活动的基础。

其次,生物在代谢过程中伴随着生长、发育和衰老过程。单细胞在代谢过程中会不断地长大,而多细胞生物更是具有一个生长、发育的过程。

第三,生物具有自我复制、繁殖和变异的现象(或经由繁殖而来)。生物在复制和繁殖过程中表现出高度的遗传特性,即亲代的遗传信息和它们所决定的结构性状被高度精确地传给下一代;同时在复制和繁殖过程中,遗传信息也会发生少量的错误,也就是变异,使后代生物和前代生物又有一些差别。

第四,生物对外界刺激都能做出一定的反应,即所谓的应激反应能力。例如植物茎尖的趋光生长,生物的免疫反应,生物的自我调节的稳态性,等等,都是生物不同的应激能力的表现。

第五,生命具有进化的能力。地球上的生命大约诞生于35亿年前。从原始的单细胞生物开始,经过漫长的进化历程,各生物物种辐射发生,形成了适应各种环境条件的多种多样的生物,直至高等智能生物人类出现。

三、定义生命的两种方法

对地球上的生命的定义,目前主要有两种方法。一种是从构成生命的物质着眼,把生命看作是一类特殊的物质结构或有特殊结构的物质。另外一种是从生命的基本特征着眼,把生命看作是一种特殊的现象。前者可以叫做实体定义,后者可以叫做功能定义或操作定义。不过,需要说明的是,由于结构和功能是紧密联系的一对范畴,因此,实体定义和功能定义常常是结合在一起的。差别主要在于定义中主要强调的是物质结构还是功能。强调物质结构重要的就是实体定义,强调功能重要的就是功能定义。

1.实体定义方法

实体定义目前也有两种。一种把生命定义为某种特定的大分子,包括“生命-蛋白质同一说”和“生命-核酸同一说”;一种把生命定义为特殊的物质结构,特别是细胞结构,又可称为“生命-细胞同一说”。

19世纪,恩格斯主要从大分子的角度定义生命。他说:“生命是蛋白体的存在方式,这种存在方式本质上就在于这些蛋白体的化学组成部分的不断的自我更新(恩格斯,10:78)。”恩格斯的这个定义是在批判杜林的生命定义的基础上提出来的。杜林曾把生命定义为细胞的新陈代谢活动。恩格斯认为,高级的生物确是由简单的类型“细胞”组成的,但有低于细胞的生物,它们和高级的生物相联系,只是因为它们的基本组成部分是蛋白质,从而它们执行着蛋白质的职能——生和死。恩格斯的这个生命定义实际上是和他关于物质的运动形式的思想是统一的。恩格斯认为自然界存在五种运动形式:即机械运动、物理运动、化动、生命运动和社会运动。这五种运动形式从历史的角度看,反映了自然界演化发展的顺序,每一种后面的运动形式都是由前面的运动形式演化来的。不同的运动形式有不同的物质承担者,有不同的运动规律,高级的运动形式包含低级的运动形式。生命运动是一种高级的运动,它是由化动发展而来的,它的物质承担者及其运动规律都不同于化动,但生命运动包含化动。恩格斯当时非常强调自然界的连续性。如果把生命定义为细胞结构之上的活动,就难以解释生命的起源问题。恩格斯特别重视从无机界到有机界的辩证发展过程,所以恩格斯选择了蛋白体作为生命活动的物质承担者。

恩格斯所理解的蛋白体和现在所说的蛋白质是不同的。他说:“在这里,蛋白体是按照现代化学的意义来理解的,现代化学把构造上类似普通蛋白或者也称为蛋白质的一切东西都包含在蛋白体这一概念之内,这个名称是不恰当的,因为普通蛋白在一切和它相近的物质中,是最没有生命的,起着最被动的作用,它和蛋类一起仅仅是胚胎发育的养料,但是在蛋白体的化学构造还一点也不清楚的时候,这个名称总比一切其它名称好些,因为它比较一般(恩格斯,10:79)。”可见,恩格斯所指的蛋白体是广义的,它甚至不是现化意义上的一种高分子,而是一个物质系统。恩格斯在不同场合用这个词,他有时甚至把细胞也叫“蛋白质小块”。比如他说:“一切有机体,除了最低级的以外,都是由细胞构成的,都由很小的,只有经过高度放大才能看到的,内部具有细胞核的蛋白质小块构成的(恩格斯,10:74)。”

总之,恩格斯把生命和蛋白体等价。生命是“蛋白质所固有的,生来具备的,没有这种过程,蛋白质就不能存在(恩格斯,10:80)。” 20世纪前半叶,随着生物化学的研究进展,人们对蛋白质的结构和功能有了越来越清楚地了解,蛋白质形态复杂,功能各异,在生命活动过程中的作用异常重要。所有这些使得很多人更加坚信生命的分子基础就是蛋白质。

到了20世纪50年代以后,DNA双螺旋结构的发现及其遗传功能的研究进展改变了人们关于生命的本质是蛋白质的看法,从此很多人把注意力转向核酸,开始把生命的分子基础看作是具有自我复制和携带有遗传信息的核酸。于是生命的定义由强调蛋白质及其代谢功能,改变为强调核酸及其遗传载体的功能。生命起源问题被还原为能进行自我复制的低聚和多聚核苷酸的起源问题。这种观点可以称为“生命-核酸同一说”。

把生命定义为某种大分子的性质和功能,必然产生这样的问题:存在非细胞形式的生命吗?生命的基本特征能否在分子状态体现出来?

现在知道,确实存在着非细胞的生命形式。主要有三类:一是,由蛋白质外壳和DNA或RNA核心组成;一类是类,是没有蛋白质外壳的、全裸的RNA分子;第三类是蛋白感染素,或叫原体(Prions),仅由蛋白质分子组成,但这种蛋白质含有自身复制的密码子。换句话说,这种蛋白质本身也是遗传信息载体。但目前对这种极为特殊的蛋白质生命了解甚少。

然而,这三种类型的非细胞生命只有在感染一个活细胞时才能表现出生命的各种特征。它们不能独立地实现其自身复制。因此,上述三种非细胞的生命不是完整的生命,不能作为原始生命的模型。

问题是,、类和蛋白感染素等都不能算是完整的生命形式,我们能因此认为在地球早期化学进化阶段也没有出现过非细胞的“大分子状态”的生命形式吗?在细胞生命出现之前的化学进化阶段,是否可能产生过单由蛋白质分子或单由核酸分子组成的生命形式?因为早期地球上可能存在大量的非生物合成的有机分子,作为大分子自身复制的外在条件,所以,大分子的生命形式很可能在地球早期是存在的(张昀,1998),就像非细胞的生命形式现在可以存在于试管中一样。

如果我们同意在细胞生命出现之前的化学进化阶段确实有过由蛋白质分子或核酸分子组成的生命形式,那么接着的一个问题就是:在生命起源的过程中,是先有蛋白质,还是先有核酸?这个问题曾有过激烈争论。“RNA世界”说认为是先有核酸。80年代初有人发现在一定条件下RNA具有酶的功能:在RNA分子剪切过程中起催化作用的是RNA自己。这为先有核酸说提供了证据。然而,原体的发现使人们又认为先有蛋白质。原体分子本身就携带有遗传信息,并控制自身的复制。因此,到底谁先谁后,现在还是没有完全弄清楚的问题。

由于在现今生命中,核酸与蛋白质之间是密不可分的。蛋白质是在核酸的信息指导下合成的,而核酸又是在蛋白质的催化下复制和转录的。因此,也很有可能早期前细胞的原始生命形式既不是RNA分子,也不是蛋白质分子,而是由核酸和蛋白质(或许还有类脂)组成的大分子系统。在这个大分子系统内,氨基酸与核苷酸之间的关系通过相互作用逐步确立,即遗传密码在这种作用中产生。

实体定义还有一种观点,即生命-细胞同一说。这种观点认为,不存在分子状态的生命形式,所有生命都是细胞才具有的。蛋白质与核酸一旦产生,必须包含在类脂形成的膜结构之内才能形成独立的生命形式。、类和原体都缺少膜分隔,因此都不能在宿主细胞之外进行各种生化反应。所以它们都不是独立的生命。

2.功能定义方法

与实体定义强调生命的结构特征相对,功能定义主要从生命的性质和功能来定义生命。功能定义也有两种,一种强调生命是多种性质的集合,所以又称“集合定义”(cluster definition);另一种强调少数几种或一种性质为生命的本质性质,可以叫做“根本性质定义”。

“集合定义”往往是通过列举生命的一系列特征来定义生命。比如莫诺(Monod)在他著名的《必然性和偶然性》(11)一书中列出三个特性作为生命的定义特性:目的性,自主的形态发生和繁殖的不变性。克里克(Crick)(1981)根据下列几个特征定义生命:自我繁殖,遗传,进化和新陈代谢。一般的生物学教科书列举的性质更多一些,比如:新陈代谢,生长,发育,遗传,进化,应激性,自稳态,自组织,等等。著名生物学家恩斯特?迈尔曾经列出一个更长的生命性质列表(Mayr 1982: 53):

(1) 所有层次的生命系统都有非常复杂和适应的组织。

(2) 生命有机体由化学上独特的一组高分子构成。

(3) 生命系统中的重要现象主要是质的,而不是量的。

(4) 所有层次的生命系统由高度可变的独特个体的群体组成。

(5) 所有的有机体拥有历史上进化来的遗传程序,它使有机体能够参与目的性的过程和活动。

(6) 生命有机体的类别是由共同家系的历史连接定义的。

(7) 有机体是自然选择的产物。

(8) 生命过程特别难以预料。

多伊恩?法默(J. Doyne Farmer)和白林(Aletta d’A Belin)曾经列举了下列一组性质作为生命共有的典型特征(Farmer & Belin 1991: 818):

(1) 生命是时空中的一种模式(pattern),而不是特殊的物质客体。对生命来说,重要的是模式和各种关系的集合,而不是特殊的原子实体。

(2) 生命具有自我繁殖的能力,或者至少是通过繁殖产生的。比如骡子虽然不育,但也是通过繁殖过程产生的。

(3) 生命存储有自我表征的信息。比如自然界的有机体在DNA分子中都存储有关于它们自己的描述,这种描述可以被生物自己翻译成蛋白质。

(4) 生命具有新陈代谢的能力,即是说,生命可以不停地与环境进行物质和能量的转换。

(5) 生命可以与环境在功能上发生的相互作用。即是说,有机体可以有选择地对外界刺激做出反应,能够适应环境,同时它们也能够创造和控制它们相应的环境。

(6) 生命的组成部分之间相互依赖。这种相互依赖维持了生物体的统一性。

(7) 生命能够在扰动面前保持稳定,或者说它能够在噪声环境中保持自己的形态和组织,发挥自己的正常功能。

(8) 生命具有进化的能力。这种进化能力并不是有机体个体的性质,而是有机体系谱的性质。

法默认为,这个列表远远不是完善的。有些有机体,比如在很多方面处在生命和非生命之间的状态。一些生命起源模型中的“原始有机体”也是这种“半活性的”实体。而根据这个列表,我们也可能把生态系统和社会系统看作是生命。所以,法默说,生命和非生命之间并没有一种截然分明的界限。恰当的做法是把生命看作是“一种连续的组织模式的性质,其中有些模式比其它模式更多或更少活性(Farmer & Belin 1991: 819)。”

集合定义通过各种性质的相互补充来帮助我们区分生命和非生命,这可以使我们避免过分简单地断定某种性质是否是生命的本质属性。然而,这既是它的优点,又是它的缺点。因为哪些性质可以作为生命的定义特征,哪些性质不能,仿佛并没有一个一致的标准。这就使我们感到集合定义有时显得相当任意。这种定义的性质列表总是变动不已,有的人的列表长一些,有的人的列表又短一些。不同的人总是根据自己的理解列举出不同的性质。

“根本性质定义”虽然也从功能性质出发定义生命,但主要是从少数更根本的性质来定义生命。生命有多种性质,然而,是什么原因使这些性质集合在一起形成生命这个独特的实体的呢?集合定义并不特别关心性质之间的联系,它解释不了为什么特殊的一组性质要集合在一起产生生命这样的实体。根本性质定义则力图克服集合定义的这些缺陷。

根本性质定义目前主要有四种:一种是“新陈代谢说”,一种是“自创生说”,还有一种是“灵活适应说”,最后一种是我所赞成的信息说。由于这部分的内容较多,所以我们在新的一节讨论这些定义。

四、几种“根本性质”定义

1.“新陈代谢说”

“新陈代谢说”是物理化学在生物学上应用的产物。19世纪,由于物理学、化学和生理学的发展,人们开始把生命看作是能够通过物理化学方式与外界环境进行物质和能量交换的新陈代谢活动,即生命系统中看不见的组成成分的持续的同化和分解过程。新陈代谢现在可以被定义为生命系统以酶为媒介的化学的和能量的转换网络的总和。新陈代谢包括物质代谢和能量代谢两个方面。物质代谢是指生物体内物质的变化,包括同化作用和异化作用两个方面。同化作用是生物把从外界吸收来的物质合成为自身的物质的过程;异化作用则是生物把自身的物质分解,排出体外或重新利用的过程。能量代谢包括储存能量和释放能量两个方面。物质代谢和能量代谢实际上是一种过程的两种不同表现。有机体在同化作用的过程中储藏能量,而在异化作用的过程中释放能量。有机体物质的更新,生理机能的发生和有序结构的维持,都有赖于能量代谢。活的生命的一个基本的表现就是其体内一直在进行着物质代谢和能量代谢。这种活动一旦停止,生命也就不复存在。所以,很多人把新陈代谢看作是生命的本质。

20世纪40年代,薛定鄂把这种新陈代谢观点作了进一步发展,提出了“负熵说”生命定义,认为生命是一种依靠新陈代谢持续面对热力学第二定律的系统。下列段落概述了他的观点(1944:74-76):

什么是生命的独特特征?什么时候一块物质可以被说成是活着的?……正是通过避免迅速腐败进入惰性的“平衡”状态使有机体看上去如此不可思议。……生命有机体怎样避免腐败呢?显然的回答是:通过吃、喝、呼吸和(在植物的情况下)同化。专门的术语叫新陈代谢……新陈代谢的本质就是有机体成功地在活着的同时使它自己从它必然产生的熵中摆脱出来。

随着随着现代物理学、化学、生物学以及系统科学的发展,到70年代,这种负熵说被人们发展成为“自创生说”。

2.“自创生说”

自创生论是由哈姆伯图?马图拉纳(Humberto Maturana)和弗兰西斯科?瓦里拉(Francisco Varela)等人于14年提出的关于生命的定义。这种定义是新陈代谢定义和物理科学中的自组织理论相结合的产物。弗雷施克尔(Gail Raney Fleischaker)1990年进一步把这个定义加以发展和具体化。“自创生”(Autopoiesis)由希腊语“auto”,即“自我”和“poiesis”,即“制造”构成。自创生系统具有三个特点:一是自我设界,即生命系统自己为自己设置边界,从而使自己与环境或其它生物区分开;二是自我产生,即生命的所有组成部分,包括它的内容物和边界都是由系统自己转化产生的;三是自我维持,即生命内部的活动在时间中是持续不间断的。马图拉纳和瓦里拉创造“自创生”这个词就是为了说明生命的那种动态的自我维持和自我创造的特性。根据马图拉纳、瓦里拉和弗雷施克尔,生命需要从外环境输入和转换能量以驱动和维持其自身生产过程,并保持其自身远离平衡的状态。生命系统的特点在于它能够把内部各个能量转换和物质相互作用的过程相互耦联,并组织成为一个完整的过程网。在这个过程网络中,系统的各种组成部分,包括边界膜结构本身都能自动地、连续地再生产出来。

具体地说,自创生生命定义的要点如下:

(1)生命的基本构成因

心理生命又叫什么生命,是人特有的生命形式

生命系统的结构层次依次是细胞、组织、器官、系统、个体、种群、群落、生态系统、生物圈。

自然系统的最高级形式,是指能独立与其所处的环境进行物质与能量交换,并在此基础上实现内部的有序性、发展与繁殖的系统。瑰丽的生命画卷,在常人眼里,也就是芸芸众生,千姿百态。但在科学家的眼中,它们却是富有层次的生命系统。

从微观的分子水平到宏观的群体水平,都属于生命系统的不同范畴,有着不同的物质和结构基础、发展和变化规律。是自然系统的最高级形式,是指能独立与其所处的环境进行物质与能量交换,并在此基础上实现内部的有序性、发展与繁殖的系统。

由大到小依次为生物圈、生态系统、群落、种群、个体、(消化、呼吸、循环等)系统、器官、组织、细胞。但单细胞生物(草履虫)不具有系统、器官、组织层次,细胞即是个体;植物是由根、茎、叶、花、果实和六大器官直接构成的。

因此没有(消化、呼吸、循环等)系统层次;是生物,但不是生命系统。任何一个生态系统都由生物群落和无机环境两大部分组成。

阳光、氧气、二氧化碳、水、植物营养素(无机盐)是物理环境的最主要要素,生物残体(如落叶、秸秆、动物和微生物尸体)及其分解产生的有机质也是物理环境的重要要素。

物理环境除了给活的生物提供能量和养分之外,还为生物提供其生命活动需要的媒质,如水、空气和土壤。而活的生物群落是构成生态系统精密有序结构和使其充满活力的关键因素,各种生物在生态系统的生命舞台上各有角色。

电脑科学研究主要研究什么

心理学的生命系统第一生命系统和第二生命系统。这个概念最早由英国作家葛瑞姆·汉卡克在《人是太空人的后代》中提出。通俗地说,第一系统指肉体,有形状、有重量,在现代化学的目光中,人就是一堆核糖核酸;第二生命系统有情感、有智慧、有善恶。它们之间的关系是:两套生命系统是互为载体的。第一套生命系统是第二套生命系统的阳载体;第二套生命系统是第一套生命系统的阴载体。

以第二套生命系统来看第一套生命系统,会发现第一生命系统有形状、有重量;以第一套生命系统来看第二套生命系统,会发现第二生命系统有情感、有智慧、有善恶。人类所谓的“生命”,是指这两套生命系统的对接。

现实生活中人们说到过的“丢魂”与“附体”现象则是两套生命系统的“错接”,一般说来“丢魂”与“附体”是对应存在的,此地某甲的“丢魂”总要反映在彼此某乙的“附体”上,反之亦然。

电脑科学研究主要研究什么

电脑科学研究的方向是很多的但具体的细分应该会到研究生阶段才分,本科阶段还是以基础课为主,基础课主要有资料结构、数字逻辑电路、计算机组成原理、作业系统原理、计算机网路基础、资料库原理等。

细分的研究方向:

1.系统结构方面有:计算机的体系结构、分散式系统、机群计算、网格计算、

平行计算系统、通讯协议分析与设计、计算机协同工作技术、通讯软体与协议工程等等多方面的内容。

2.软体方面有:智慧规划与自动推理、智慧诊断与规划、约束程式、智慧决策支援系统、程式设计语言及实现技术、软体形式化方法、资料库理论、网路搜寻引擎、资料仓库与资料探勘、网路平行计算等等的方面

计算机应用方面:这个方面的研究就很多了,他可以设计到很多的行业,比如计算机游戏程式设计,机器视觉等。

我就知道这么些了,不知道对您有没有帮助。

如何申请加拿大电脑科学研究生专业

留学选校或者选专业定位可以

参考留学志愿参考系统 :liuxue315.edu./StudyAssess,输入GPA、专业等资讯,系统会自动从资料库中匹配出与你情况相似的同学案例,看看他们成功申请了哪些院校和专业,也可以按照留学目标来查询,看看你的目标院校和专业都哪些背景(语言成绩多少分、学校背景如何、什么专业、GPA多少等)的学生申请了,也从而对比自身情况,制定大致的目标和方向。

电脑科学在理论方面都研究什么?

我们电脑科学专业主要研究计算机硬体,软体,程式设计,以及处理器原理,计算机电路原理,还有网路,资讯保安,以及作业系统,资料库原理......

读电子资讯的能考南大的电脑科学研究生吗

可以的。研究生考试可以跨专业考。

再说你学的是电子资讯工程的,和计算机有一点点交汇之处(在数字软体方面)。

并且,这两年有从电信学院调剂到计算机学院的现象。如湖南大学。原因很简单,因为计算机专业的分数线是和工科线一起划线的,计算机统考以后,很多报考计算机专业的学生没有过国家的工科复试线,学校缺人,于是只好去电信学院要人了!

我身边就有活生生的例子,09年一同学报考通讯专业的,落榜后,被浙江理工大学调剂过去读计算机应用专业研究生了!

计算机应用研究和电脑科学哪个好?

电脑科学要好些

不过要求也更高,你可以咨询下学海湾论文

计算机在科学研究中能做什么?

自己看下,很抽象的。

计算机模拟在科学研究中的作用 齐磊磊 (华南师范大学公共管理学院,广州,510006) 摘要:机算机模拟在科学研究中具有重要作州:它或替代了传统分析式的数学模 型,提高了对复杂系统的认知程度;作为一种灵活有效的模拟工具,它积极参与建立知识框 架,处理了用传统的实验方法不能进行研究的问题,是一种特殊的科学实验。 关键词:计算机模拟;复杂系统;科学实验:有效性确认 科学研究的目的是为了更好地认识世界,这个认识的过程主要是通过对世界上各种事物、 现象进行阐释分析来实现的:但实际上,世界上大部分的事物纷繁复杂,并不可能都简单地 只用传统的数学分析或统计力学这样的科学方法就可以理解掌握。随着认识物件复杂度的增 加,要想分析随处可见的复杂系统,计算机模拟不失为一个极好的选择。 一、计算机模拟及其可行性 计算机模拟,也称为计算机模拟,是一种以计算机为基础的模拟技术。由于计算机所具 有的独特的计算速度快、储存量大、精确度高等特点,使它适于解决那些规模大、难以解析 化以及不确定性问题。计算机模拟正是随着计算机的快速发展而发展起来的,它的第一次大 规模的发展发生在二战时期的曼哈顿中对核爆炸过程的模拟,当时对核爆炸过程的模拟 使用的是(Monte Carlo)演算法四对12个硬球的模拟。因为一方面,核爆炸的威力和 对生态环境造成的严重危害以及核试验的经费成本等问题决定了直接对核爆炸的链式反应过 程进行频繁的实验是不切合实际的;另一方面,核武器中的原子核数量极其巨大,简单的数 学解析式不可能对如此复杂而庞大的系统进行建模。同时,原子核之间发生反应的短暂性、 核材料的纯度、种类以及核弹头的储存时间和周围环境等因素的影响促使实验人员把目光转 向了一种新的领域——计算机模拟核试验。这种模拟试验除了计算机以外,几乎不需要任何 实验装置,但却能得出大量相当有价值的资料,是一种既经济又实用的实验方法。随后这种 极具潜力的模拟方法被广泛应用到诸多领域中,为人类探索其他学科的发展开辟了新的道路。 一般情况下,计算机模拟始于一个计算机模型的建立,然后是设计一个实现这个模型的 程式。也就是说,它是一个对特定系统的抽象模型进行建模的可运算的计算机程式,是一种 将模型和计算很好地结合起来的方法。传统上,系统的形式模型由数学模型发展而来,这种 数学模型试图从一系列参量和初始条件中预测出系统行为这样一类问题中得到解析解,所阻 计算机模拟主要用来或替代数学模型。在实际应用中,计算机模拟的物件通常是复杂系 统,即那系统间具有非线性相互作用的复杂系统或复杂适应系统,如地球生命出现以前 的导致生命的前生命化学反应、生物进化本身、个体生命有机体以及生命系统等等。计算机 模拟方法的涉及领域极其广泛,在物理、化学和生物学等自然科学中,在管理学和语言学等 社会科学中以及经济学、心理学等处于自然科学和人文科学的边缘学科中,计算机模拟已经 成为建模的一个有用的部分,它提高了我们辨明系统真正性质的能力,使我们对这些系统内 ①方法是计算机模拟的基础,它基于对大量的统计结果来实现一些确定性问题的计算 ?9?9 166?9?9 部的活动有更深入的了解。目前看来,计算机模拟在科学领域内的应用例项已经是数见不鲜, 但作为一种科学研究的方法,从方法论的角度对它进行分析却比较少见,所以本文的主要目 的并不是介绍计算机模拟的具体方法,而是分析它在帮助我们认知世界尤其是世界中的复杂 系统时的积极作用及其局限性。首先对计算机模拟的可行性进行简要的说明: 作为计算机模拟方法的执行平台,计算机本身就是人类思维和创造中模拟的产物:计算 机硬体系统是对认知系统的一种形式模拟;而计算机软体系统则是对人在认知过程中思维和 创造方式的一种模拟。显然,计算机身兼二职,它既是模拟的产物,反过来又是对人类思维 进行模拟的工具。由于人们对事物的认识过程实际上是一种大脑对事物的建模过程,而计算 机本身所具有的这种双重特性,使计算机建模成为可能,即它的模拟过程就是一种把人类的 先验知识转化给计算机的过程。计算机对思维的模拟特性使得它从理论上可以表征所有的人 类知识,包括外部环境和对人类自身的知识。…所以借助计算机模拟方法,可以对真实世界进 行模拟。随着科学研究的深入,计算机模拟成为一种重要的研究方法,它的积极作用也日益 彰显。 二、计算机模拟的积极作用 (1)计算机模拟解决了传统数学分析方法所不能解决的问题 传统的数学分析只是孤立地研究某个组成部分,并不考虑相互作用的整体行为,它只适 用于各个部分相加之和等于整体行为的系统,也就是系统的组成部分之间存线上性关系时, 它才是有效的。但是,在我们生活的每一个地方都面临着复杂的非线性系统,特别是在生命、 行为、社会和环境科学以及现代技术或医学的应用领域中(例如癌症的研究、衰老研究),涉 及非常重要的复杂性的问题领域。由于这些领域内的非线性系统并不遵循叠加原理,即使我 们把非线性的复杂系统分解成我们能够认知的简单子系统,但由于众多的子系统之间存在着 相互作用,这使得系统的整体行为要比各个子系统的行为复杂得多。所以我们要想揭开这些 复杂系统其中的奥秘,解决与人类生存状况密切相关的问题,并从中得出更深层次的解释, 牛顿的经典数学和统计方法已不能独自完成。复杂性科学的先驱者之一霍兰(Holland)在研 究复杂系统变数之间的这种“相互作用”时指出,即使各部分间只存在极少量的简单的相互 作用,我们也不能再用分析的方法给出复杂性研究的结论。 面对无法用传统方法进行分析的复杂的系统,从20.世纪80年代末开始,美国圣菲研究 所(Santa Fe Institute)从事复杂性研究的科学家们试图找到控制复杂系统作用的基本原理, 他们以计算机为工具,发起了计算机模拟实验的方法论革命。同是圣菲研究所和洛斯亚拉莫 斯国家实验室成员的拉斯穆森和巴里特指出:由于与生俱来的系统复杂性(如复杂的生命现 象),在科学和工程这两个研究领域中,如果只使用分析性的方法并不能为自己感兴趣的性 质或引起一种现象的详细情况建立一个适当的、明确的模型,即使是在其他的并不是很复杂 的情况下,这个现象的模型仍然没有被推汇出来。2由于计算机模拟能把分析上难以处理的问 题(如三体问题)变成计算上易于处理的问题,所以在分析性方法不易处理的情况下,人们 开始越来越多地使用计算机模拟的综合方法。 (2)计算机模拟是一种灵活有效的模拟工具,为建构理论知识提供一个主要方法 作为一种模拟工具,计算机模拟是灵活的。根据计算机模拟的定义,计算机模拟指的是 对一个系统演化过程进行动态模拟的可运算的计算机程式。也就是说,计算机模拟之所以能 模拟诸多现象,主要借助的是它的程式。计算机的程式设计语言被证明是便于进行模拟的, 而计算机的程式设计语言又是极其丰富的(自20世纪50年代出现FORTRAN语言以来,已 有数百种计算机高阶程式设计语言,最常见的也有几十种),这些丰富的程式语言可以方便、 灵活地描述系统的状态以及复杂的程序。同时计算机程式中涉及的基本语句少,但却具有强 大的功能,如可以静态地表示逻辑关系、表示模糊数值或随机数值:也可以动态地进行数值 计算、表示时间程序和活动的过程。所以有人说,当一切方法都用尽,再也没办法解决问题 时,不妨试试计算机模拟。j1 在众多科学学科中,有些学科(如物理学)的理论发展较为成熟,但有些新兴学科或者 是综合学科(如生命科学、心理学、系统科学等)中却缺少那些对现象进行解释的简洁优美 的理论,在这些学科中,对现象的解释典型地是用自然语言叙述表达出来,而且并不总是建 立在明确完整的正规化基础之上的。而计算机模拟是一个从代表了系统行为的计算模型的执行 过程中获得结果的动态过程,它可以通过复制系统的行为提供获取计算模型的途径。按照这 个观点,计算机在模拟过程中并不需要一种用于分析的结论性的理论,就能动态地模拟出较 为直观、较为清晰的结果,如可以列印的资料、动态变化的图形等等。这样,在缺乏满意理 论的前提下,计算机模拟的结果,可以积极参与建立理论框架,在创立科学理论中发挥着重 要的作用。 (3)计算机模拟是一种特殊的科学实验 在科学研究中,并不是所有的科学问题都能直接付诸于实验的,随着研究的深入,越来 越多地出现了许多非实验所能解决的问题,这主要是指那些由数量大、关系复杂的子系统所 组成的非线性系统引起的问题。面对这些复杂系统,计算机模拟无论在应用方面还是在认识 论方面都表现出重要的作用,它可以帮助科学家研究那些不能用传统的实验方法进行研究的 问题。在这种意义上,可以把计算机模拟看成是一种区别于传统的实验方法的特殊的科学实 验。我们这里所说的传统的实验指的是为实现某种目的,实验人员在实验室中对实验仪器的 操作过程。以生物学为例,这种传统的实验指的是在生物体内或在生物体外(如在试管内) 完成的实验。相对于传统的实验模式,计算机模拟处理速度快且经济安全,它能起到实验的 作用且它的应用领域又不只局限于实验。 以计算机模拟形式完成的特殊实验通常被称为矽实验,这类实验是通过执行计算机程式 来完成的,它具有两种功能:第_个功能是干预(加快或减慢或中断)实验过程,如可以随 时执行、停止、接受检查,并可以在新的条件下重新开始执行,这些都是难以从实际实验中 得到的,而在大多数现实的动态系统中也是无法实现的(如生态系统和经济系统)。借助这个 功能,在需要推动事物的正常发展过程时,计算机模拟可以实现这种目标;第二个功能是模 块化。这里我们所说的模组化主要是从功能角度而言,模组类似“黑箱”,更形象地说就是将 其“打包”或者是“封装”,也就是在对系统进行模拟实验时,无需了解它的各令子系统的内 部结构,只需知道它具有什么功能就可以了。其优点是在对被模拟系统进行计算机模拟时不 用深究其变动机理,只要从实际资料或直观感觉出发,进行模拟,然后根据模拟结果进行反 馈控制,修改模拟程式,最后使模拟结果尽可能地接近真实资料。 另外,由于实际实验的局限性,常用计算机模拟来代替实际的实验来研究那些难以达到 的系统,如对微观或巨集观世界中的许多系统进行探索时,计算机模拟方法扮演着重要的作用。 由于这个原因,模拟被看成是在现实中不可能完成的实验的替代物,这里的不可能性是从理 论或者是实践的角度而言:从理论的角度来说,不可能的实验指的是分析与事实相反的情况, 例如去研究与真实事物有差别的某些基本常数(如,电子的电荷)可能具有的数值;从实践 ?9?9 168?9?9 的角度来说,不可能的实验指的是对我们不可能接近的诸如一颗恒星的内部结构这样的物件 进行的研究或操作。所以在科学研究中,计算机模拟不只是实验,它是一种特殊的科学实验, 一种理论上的模型实验,一种思想实验,它是联络理论与实验之间的桥梁。〔41 尽管计算机模拟方法还存在着诸多局限性,∞但这与它在科学研究中的推动作用比较而言 则是小巫见大巫。以系统科学的发展为例,现代系统思想在上世纪初就已经在科学和工程中 初露端倪,但直到20世纪的40年代末50年代初期全电子数字计算机出现后,它的重要性才 日趋显现并在短短几年的时间里迅速发展起来。计算机模拟方法的出现说明了为什么在计算 机技术出现之前,对具有复杂性特征的系统的研究无法获得成功的原因,也说明了为什么现 在系统科学的发展与计算机技术的发展关系如此密切。《一种新科学》(ANew Kind ofScience) 的作者沃尔夫拉姆曾经提出,科学正处在一种新型研究方法变革的重大时期,这种新型的研 究方法就是计算机模拟实验。〔5以计算机为执行平台的模拟方法是自1 7世纪伽利略建立受控 实验的科学方法以来的又一种具有划时代意义的科学研究方法,它不仅弥补了人类思维的弱 点,也缓解了人们在研究工具上的局限性。计算机模拟方法的蓬勃发展承载着社会的发展, 促进了科学研究的进步,提高了人类认识的能力。计算机模拟方法作为一种科学的研究方法, 无论在实践上还是在理论上,都具有重要的作用,是不可或缺的。

简述电脑科学的研究领域

计算机的应用领域已渗透到社会的各行各业,正在改变着传统的工作、学习和生活方式,推动着社会的发展。计算机的主要应用领域如下:

1.科学计算(或数值计算)

科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算。在现代科学技术工作中,科学计算问题是大量的和复杂的。利用计算机的高速计算、大储存容量和连续运算的能力,可以实现人工无法解决的各种科学计算问题。

例如,建筑设计中为了确定构件尺寸,通过弹性力学汇出一系列复杂方程,长期以来由于计算方法跟不上而一直无法求解。而计算机不但能求解这类方程,并且引起弹性理论上的一次突破,出现了有限单元法。

2.资料处理(或资讯处理)

资料处理是指对各种资料进行收集、储存、整理、分类、统计、加工、利用、传播等一系列活动的统称。据统计,80%以上的计算机主要用于资料处理,这类工作量大面宽,决定了计算机应用的主导方向。

资料处理从简单到复杂已经历了三个发展阶段,它们是:

①电子资料处理(Electronic Data Processing,简称EDP),它是以档案系统为手段,实现一个部门内的单项管理。

②管理资讯系统(Management Information System,简称MIS),它是以资料库技术为工具,实现一个部门的全面管理,以提高工作效率。

③决策支援系统(Decision Support System,简称DSS),它是以资料库、模型库和方法库为基础,帮助管理决策者提高决策水平,改善运营策略的正确性与有效性。

目前,资料处理已广泛地应用于办公自动化、企事业计算机管理与决策、情报检索、图书管理、**电视动画设计、会计电算化等等各行各业。资讯正在形成独立的产业,多媒体技术使资讯展现在人们面前的不仅是数字和文字,也有声情并茂的声音和影象资讯。

3.技术(或计算机设计与制造)

计算机技术包括CAD、CAM和CAI等。

⑴计算机设计(Computer Aided Design,简称CAD)

计算机设计是利用计算机系统设计人员进行工程或产品设计,以实现最佳设计效果的一种技术。它已广泛地应用于飞机、汽车、机械、电子、建筑和轻工等领域。例如,在电子计算机的设计过程中,利用CAD技术进行体系结构模拟、逻辑模拟、划分、自动布线等,从而大大提高了设计工作的自动化程度。又如,在建筑设计过程中,可以利用CAD技术进行力学计算、结构计算、绘制建筑图纸等,这样不但提高了设计速度,而且可以大大提高设计质量。

⑵计算机制造(Computer Aided Manufacturing,简称CAM)

计算机制造是利用计算机系统进行生产装置的管理、控制和操作的过程。例如,在产品的制造过程中,用计算机控制机器的执行,处理生产过程中所需的资料,控制和处理材料的流动以及对产品进行检测等。使用CAM技术可以提高产品质量,降低成本,缩短生产周期,提高生产率和改善劳动条件。

将CAD和CAM技术整合,实现设计生产自动化,这种技术被称为计算机整合制造系统(CIMS)。它的实现将真正做到无人化工厂(或车间)。

⑶计算机教学(Computer Aided Instruction,简称CAI)

计算机教学是利用计算机系统使用课件来进行教学。课件可以用著作工具或高阶语言来开发制作,它能引导学生回圈渐进地学习,使学生轻松自如地从课件中学到所需要的知识。CAI的主要特色是互动教 育、个别指导和因人施教。

4.过程控制(或实时控制)

过程控制是利用计算机及时集检测资料,按最优值迅速地对控制物件进行自动调节或自动控制。用计算机进行过程控制,不仅可以大大提高控制的自动化水平,而且可以提高控制的及时性和准确性,从而改善劳动条件、提高产品质量及合格率。因此,计算机过程控制已在机械、冶金、石油、化工、纺织、水电、航天等部门得到广泛的应用。

例如,在汽车工业方面,利用计算机控制机床、控制整个装配流水线,不仅可以实现精度要求高、形状复杂的零件加工自动化,而且可以使整个车间或工厂实现自动化。

5.人工智慧(或智慧模拟)

人工智慧(Artificial Intelligence)是计算机模拟人类的智慧活动,诸如感知、判断、理解、学习、问题求解和影象识别等。现在人工智慧的研究已取得不少成果,有些已开始走向实用阶段。例如,能模拟高水平医学专家进行疾病诊疗的专家系统,具有一定思维能力的智慧机器人等等。

6.网路应用

计算机技术与现代通讯技术的结合构成了计算机网路。计算机网路的建立,不仅解决了一个单位、一个地区、一个国家中计算机与计算机之间的通讯,各种软、硬体的共享,也大大促进了国际间的文字、影象、视讯和声音等各类资料的传输与处理。

电脑科学有什么可研究的课题

多啦 设计 人工智慧 作业系统等等。。。

满意请纳

美国电脑科学研究生专业排名是怎样的

排名

院校

分数

#1

Carnegie Mellon University

5.0

Pitt *** urgh, PA

#1

Massachusetts Institute of Technology

5.0

Cambridge, MA

#1

Stanford University

5.0

Stanford, CA

#1

University of California— Berkeley

5.0

Berkeley, CA

#5

University of Illinois— Urbana- Champaign

4.6

Urbana, IL

#6

Cornell University

4.5

Ithaca, NY

#6

University of Washington

4.5

Seattle, WA

#8

Princeton University

4.4

Princeton, NJ

#9

Geia Institute of Technology

4.3

Atlanta, GA

#9

University of Texas— Austin

4.3

Austin, TX

#11

California Institute of Technology

4.2

Pasadena, CA

#11

University of Wisconsin— Madison

4.2

Madison, WI

#13

University of California— Los Angeles

4.1

Los Angeles, CA

#13

University of Michigan— Ann Arbor

4.1

Ann Arbor, MI

#15

Columbia University

4.0

New York, NY

#15

University of California— San Diego

4.0

La Jolla, CA

#15

University of Maryland— College Park

4.0

College Park, MD

#18

Harvard University

3.9

Cambridge, MA

#19

University of Pennsylvania

3.8

Philadelphia, PA

#20

Brown University

3.7

Providence, RI

#20

Purdue University— West Lafayette

3.7

West Lafayette, IN

#20

Rice University

3.7

Houston, TX

#20

University of Southern California

3.7

Los Angeles, CA

#20

Yale University

3.7

New Hen, CT

以上是我对于这个问题的解答,希望能够帮到大家。

想考长春工业的电脑科学研究生需要多少分和考什么

过了国家线即可。